
Oracle University | Contact Us: 800-260-690

Java SE 8 New Features

Duration: 2 Days

What you will learn

This Java SE 8 New Features training delves into the major changes and enhancements in Oracle Java SE 8. You'll

focus on developing an understanding of the basics, then looking at using streams and lambda expressions with

collections.

Learn To:

Work with the new Java Date and Time API.

Use the Nashorn JavaScript engine.

Create lambda expressions using the default library interfaces.

Use new concurrent lambda features.

Benefits to You

By enrolling in this course, you'll expand your knowledge of Java SE 8, while building your Java skill set. It wraps up with

an overview of Mission Control and Java Flight Recorder, which are now included with JDK 8.

Audience
Developer
J2EE Developer
Java Developers
Project Manager

Related Training

Suggested Prerequisites
Java SE 7 Programming

Java SE7 Fundamentals

Programación Java SE 7

Course Objectives
Create lambda expressions using the default library interfaces

Create lambda expressions using the proper syntax

Use new concurrent lambda features

Use the new Date/Time API

Copyright © 2013, Oracle. All rights reserved. Page 1

http://education.oracle.com/pls/web_prod-plq-dad/db_pages.getpage?page_id=3
http://education.oracle.com/pls/web_prod-plq-dad/db_pages.getpage?page_id=3
http://education.oracle.com/pls/web_prod-plq-dad/db_pages.getpage?page_id=225

Use Mission Control and Flight Recorder

Use the new Nashorn JavaScript Engine

Course Topics

Course Introduction
Reviewing course objectives
Discussing course format and LVC
Getting acquainted with instructor and student
Discussing course topics planned for coverage
Overview of changes in 8

Introducing Lambda Expressions
Describing the purpose of an anonymous inner class
Describing drawbacks to anonymous inner classes
Describing the components of a lambda expression
Defining a functional interface
Creating programs that use lambda expressions

A Case for Lambda Expressions
Discussing the reasons for adding lambda expressions to the Java language
Reviewing the standard way of extracting data in Java
Refactoring code to reduce redundancy
Refactoring code to use inner classes
Refactoring code to use lambda expressions
Listing the benefits of lambda expressions

Filtering Collections with Lambdas
Iterating though a collection with forEach
Iterating through a collection using lambda syntax
Describing the Stream interface
Filtering a collection using lambda expressions
Calling an existing method using a method reference
Chaining multiple methods together
Comparing function and imperative programming
Defining pipelines in terms of lambdas and collections

Using Built in Lambda Types
Listing the built in interfaces included in java.util.function
Determining true or false with a Predicate
Processing an object and return nothing with Consumer
Processing one object and return another with Function
Generating a new object with Supplier
Using primitive versions of the base interfaces
Using binary versions of the base interfaces

Collection Operations with Lambda
Extracting data from an object using map
Searching for data using search methods

Copyright © 2013, Oracle. All rights reserved. Page 2

Describing the types of stream operations
Describing the Optional class
Performing calculations using methods
Describing lazy processing
Sorting a stream
Saving results to a collection using the collect method

Parallel Streams
Reviewing the key characteristics of streams
Contrasting old style loop operations with streams
Describing how to make a stream pipeline execute in parallel
Listing the key assumptions needed to use a parallel pipeline
Defining reduction
Describing why reduction requires an associative function
Calculating a value using reduce
Describing the process for decomposing and then merging work

Lambda Cookbook
Modifying a list using removeIf
Updating a list using replaceAll
Updating a map using computeIfAbsent, computerIfPresent, and merge
Sending the keys and values from a map to a stream
Reading a file to a stream
Reading a text file into an ArrayList
List, walk, and search a directory structure using a stream
Flattening a stream using flatMap

Method Enhancements
Considering the importance of building good libraries
Using static methods in Interfaces
Using default methods
Understanding default method inheritance rules

Using the Date/Time API: Working with Local Dates and Times
Listing the goals of the Date/Time API (JSR-310)
Creating and manage date-based events
Creating and manage time-based events
Combining date and time into a single object

Using the Date/Time API: Working with Time Zones
Working with dates and times across time-zones and manage changes resulting from daylight savings

Using the Date/Time API: Working with Date and Time Amounts
Defining and create timestamps, periods and durations
Applying formatting to local and zoned dates and times

JavaScript on Java with Nashorn: Creating and executing shell scripts
Creating and execute shell scripts using JavaScript and Nashorn

JavaScript on Java with Nashorn: Writing JavaScript Applications
Developing JavaScript applications that leverage Java code using Nashorn

Copyright © 2013, Oracle. All rights reserved. Page 3

JavaScript on Java with Nashorn: Writing JavaFX Applications Using JavaScript
Running JavaScript script from Java applications usingJSR-223
Prototype JavaFX applications using Nashorn and JavaScript

Intro to Mission Control
Describing JMX and Managed Beans with Mission Control
Monitoring CPU utilization with Mission Control
Analyzing JVM characteristics with Mission Control
Analyzing heap memory with Mission Control

Intro to Flight Recorder
Describing the Java Flight Recorder
Describing the Java Flight Recorder Architecture
Starting a Java Flight Recording
Managing a Java Flight Recording
Analyzing a Java Flight Recording

Copyright © 2013, Oracle. All rights reserved. Page 4

